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imposable on that of 6. A similar correlation was made between 
3 and 7. 

Acetate kinase catalyzes stereoselective phosphorylation 
of one of the oxygen atoms at P3 of ADP/3s and pyruvate kinase 
stereoselectively phosphorylates the other.12 To confirm the 
chiral purity at P^ of 4 and 5 prepared synthetically and to 
establish the orientations of phosphorylation by these enzymes, 
4 and 5 were enzymatically phosphorylated to ATP^SJS18O. 
Scheme III outlines our analytical procedure for determining 
whether 18O in ATP/3S,/3180 is bridging or nonbridging. Hy­
drolysis of 10 in Scheme III occurs with nearly equal parti­
tioning of bridging oxygens into both 11 and 12 (53.1 ± 2.8% 
into 12 and 46.8 ± 2.8% into 11). Therefore, if 18O is bridging 
in ATP/3S,|S180, both 11 and 12 isolated according to Scheme 
III will be enriched in 18O. If it is nonbridging, no 18O will be 
found in 11. Table I gives relevant mass spectral data. The 18O 
enrichment in 4 and 5 was 81.3%; so Table I confirms the 31P 
NMR data on chiral purity of these compounds. The data also 
show that acetate kinase catalyzes phosphorylation of the 
pro-R oxygen in ADP/3S, i.e., 18O in 4, and pyruvate kinase 
catalyzes phosphorylation of the pro-S oxygen, i.e., 18O in 
5. 

Jaffe and Cohn have recently employed a different approach 
and reached the same conclusion regarding the absolute con­
figurations at Pfj in ATP/3S diastereomers.13 
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Stereochemical Course of Thiophosphoryl Group 
Transfer Catalyzed by Adenylate Kinase 

Sir: 

In recent years the mechanisms of phosphotransferase action 
have been studied intensively by such techniques as kinetics, 
radiochemical tracers, and magnetic resonance. These have 
produced valuable mechanistic information; however, the 
findings in such experiments are generally determined by the 
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kinetics of the catalytic pathway, including the kinetics for 
desorption of products. Therefore, for example, the detection 
of a catalytic intermediate such as a covalent phosphoryl en­
zyme may be difficult if it exists at a small steady-state con­
centration. 

Stereochemical data on phosphotransferases can give im­
portant mechanistic information which is independent of the 
kinetics. When the phosphate group is chiral and its configu­
rations in the substrate and product can be related, the ste­
reochemical course of the phosphoryl group transfer can be 
established. Net inversion of configuration is indicative of a 
single displacement of the phosphoryl group, and net retention 
is indicative of a double displacement, possibly via a covalent 
phosphoryl enzyme intermediate. In this paper we report on 
the synthesis of ATPYS,71 8O2 with a chiral -y-[,80]phos-
phorothioate group of known configuration and on its use in 
showing that [l80]thiophosphoryl group transfer catalyzed 
by rabbit muscle adenylate kinase occurs with net inversion 
of configuration of the [l80]phosphorothioate group. 

The synthesis of ATPYS 1Y 1 8O having the R configuration 
at P7, 6, is outlined in Scheme I. ADPaS,o180,4, having the 
S configuration at P„ is prepared by rabbit muscle adenylate 
kinase catalyzed phosphorylation of 2 by ATP.3 I4 was acti­
vated to 3 by reaction with diphenyl phosphochloridate, and 
3 and 4 reacted smoothly in dimethylformamide-pyridine to 
produce 5. The latter compound was not routinely purified but 
was converted directly to 6 by periodate cleavage of the un­
blocked ribosyl ring, acid deblocking of the other ribosyl ring, 
and alkaline elimination of the cleaved nucleoside as described 
in the preceding paper.5 The overall yield of 6 from 4 was 55%. 
In one experiment 5 was purified by DEAE-Sephadex column 
chromatography, and it gave a 31P NMR spectrum consisting 
of a P„ doublet 11.44 ppm upfield from H3PO4 (J^13 =18.31 
Hz), a P7 doublet 43.21 ppm downfield from H3PO4 (7^7 = 
25.64 Hz), and a P^ doublet of doublets at 24.13 ppm upfield 
from H3PO4. 
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Table I. Configuration at P3 of ADP0S,/318O Produced by 
Adenylate Kinase 

phosphorylating 
system 

acetate kinase 
pyruvate kinase 

mass% 18O0 

trimethyl phosphate trimethyl phosphorothioate 

1.1 ±0.1 83.0 ±0.2 
20.3 ±0.2 44.6 ±0.4 

" The degradation of ATP(3S,/3180 to trimethyl phosphate and 
trimethyl phosphorothioate and the mass analysis of those compounds 
were as described in the preceding paper.5 
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ATP7S is a reasonably good thiophosphoryl donor substrate 
for adenylate kinase, which catalyzes eq 1: 

MgATP + AMP ^ MgADP + ADP (D 
When AMP is thiophosphorylated by 6, the product is 
ADP/3S,/3180, and the configuration of the /3-[18O]phospho­
rothioate group can be related to that of the 7-[18O] phos­
phorothioate in 6 by the procedure described in the preceding 
paper. Thus the configuration at P7 in compound 6 of this 
paper is the same as that at P^ in compound 4 and opposite that 
in compound 5 of the preceding paper.5 Therefore, if acetate 
kinase phosphorylates the 18O in ADP/3S,/3180 produced by 
adenylate kinase, the configuration is the same as that in 6 
(retention) and, if pyruvate kinase phosphorylates this 18O, 
the configuration is opposite that in 6 (inversion). The data are 
set forth in Table I which shows that the configuration is op­
posite that in 6. We conclude that the reaction occurs with net 
inversion of the configuration of the phosphorthioate group. 
The least complex interpretation of this result is that the 
[18O] thiophosphoryl group is transferred directly between the 
bound donor and acceptor substrates and not via a covalent 
thiophosphoryl enzyme intermediate. 

Our determination of the stereochemical course of adenylate 
kinase action depends only upon knowledge of the relative 
configurations of the [18O]phosphorothioate groups prepared 
in this and the preceding work.5 The recent assignment of the 
S configuration to P„ of ATPaS isomer A6 enables us to assign 
absolute configurations of A T P T S ^ 1 8 O and ADP0S,/318O 
described in this and the preceding paper. 

The 18O enrichment in the ADP/3S,018O sample used in 
Table 1 was 85.2%. Comparing this with the 83.0% enrichment 
in trimethyl [I80]phosphorothioate obtained from the 
ATP/3S,/3' 8O sample resulting from acetate kinase catalyzed 
phosphorylation, it appears that thiophosphoryl group transfer 
by rabbit muscle adenylate kinase occurs with 97.6% inversion. 
Given the uncertainties of experimental error and of the 
magnitude of stereoselectivity exhibited by acetate kinase in 
the phosphorylation of ADP/3S,018O, this cannot be distin­
guished from 100% inversion. 

Orr et al. have recently prepared ATP7S,7180 of unknown 
P7 configuration and shown that three phosphotransferases 
catalyze [18O]thiophosphoryl transfer with complete stereo-
specificity and the same but unknown stereochemical conse­
quences.7 The present work represents the first synthesis of 
ATP7S,7I80 with known configuration and the first delin­
eation of the stereochemical course of catalysis by a phos­
photransferase. 
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Ultraviolet Chromophores of Palytoxins 

Sir: 

The palytoxins, exceedingly poisonous substances from 
marine soft corals of the genus Palythoa,1'3 exhibit ultraviolet 
absorption maxima at 263 and 233 nm. The X 263 chromo-
phore of these toxins is associated with a iV-(3'-hydroxypro-
pyl)-rra«^-3-amidoacrylamide moiety (I).2'4 We report here 

the degradation of palytoxins to 2a and 5 (isolated and char­
acterized as 6) which possess the X 263 and one of the two X 
233 chromophores,5 respectively. 

o o 

• " V T S O I 

2a. R = H 

3a R = Me 

The toxin was oxidized with excess sodium metaperiodate 
in H2O at O 0C and the reaction mixture was extracted with 
chloroform. The organic material that remained in the aqueous 
layer was separated by countercurrent distribution (n-BuOH, 
H2O) to give 2 (Xmax 263 nm) as the slowest moving fraction. 
The ' H NMR spectrum of 2 did not exhibit an aldehydic sig­
nal, but 2 was readily converted to 3 when allowed to stand in 
MeOH-CHCl3 solution. The 1HNMR spectra of 2 and 3 were 
very similar and both showed doubling of signals for the 
presence of two closely related compounds.6'7 The major 
compounds in 2 and 3 were 2a and 3a. Acetylation of 2 and 
separation of the mixture by TLC on silica gel (20% MeOH-
benzene) led to triacetate 4: UV (EtOH) Xmax 257 nm (« 
17 300); 1H NMR (CDCl3) 3 H singlets at 5 2.06, 2.09, 2.30. 
The El mass spectrum of 4 did not exhibit a molecular ion peak 

O ,0,,,,.Si C°6 (d '14 '6 ) / ^ — , 6 . 5 , 
\ O V H 0 { ^ 4 . 1 4 ( t , 6.5) 

AcO ^ A N ^ K X / Y ^ O A C W . 0 6 
^ i w « , „ , r

J I ' ">i.86 (quintet, 6.5) 

/ v5.48 (d, 14.5) 
6.3S (br t , 3) 

but did show small fragment ion peaks at m/e 338 and 278 and 
a very intense peak at m/e 134 for successive losses of two 
HOAc molecules and C O N H C H 2 C H 2 C H 2 O A C from the 
molecular ion8 to form a (possible structure of m/e 134 
ion). 

The mixture of 5 and other aldehydes in the chloroform 
fraction was reduced with NaBH4 in 2-propanol and acetylated 
with acetic anhydride in pyridine. Preparative TLC on silica 
gel (35% EtOAc-cyclohexane) gave 6: UV (MeOH) Xmax 227 
nm; for 1H NMR (CDCl3) see formula; IR (CHCl3) i w 910 
cm-1; mass spectrum m/e (rel intensity) (20 eV), no molecular 
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